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Abstract~A general solution for the total strains that develop in elastically homogeneous and
arbitrarily eigenstrained linear-elastic bodies is derived by means of continuous Fourier transforms
(CFT). The solution is specialized to the case of a dilatorically eigenstrained spherical region in an
infinite body, both of which are made of the same cubic materia1.lt is shown that, for "slight" cubic
anisotropy, all integrations can be performed in closed··form. Moreover, the stress-strain fields
inside of the inclusion prove to be of the Eshelby type, i.e., they are homogeneous and isotropic.
The range of validity of the closed-form solution is investigated numerically by means of discrete
Fourier transforms (OFT). It is demonstrated that, even for strongly cubic materials, the c1osed­
form solution is still useful in order to perform parameter studies. Finally. the total elastic energy
of two eigenstrained spheres in slightly cubic material is calculated in closed-form by means of CFT.
The minimum of this energy is determined as a function of relative position of the two inclusions
with respect to the crystal axes and it is used to explain the formation of preferred textures in cubic
materials. C(') 1998 Elsevier Science. All rights reserved.

I. INTRODUCTION

The presence of inclusions in a solid very frequently leads to the formation of eigenstresses
and eigenstrains. Physically speaking, there are two predominant reasons for their occur­
rence. First, they can be due to a thermal mismatch between the matrix and the inhomo­
geneity and, second, they can result from a phase transformation, i.e., a spontaneous change
of the lattice parameters of the inclusion. Figure 1 shows a dynamic dark-field transmission
micrograph of an Alumina crystal containing almost spherical Zirconia inclusions in the
tetragonal modification. The presence of thermal eigenstrains becomes visible in form of
"contrast fringes" which are located around the mismatched spheres (Mader, 1987). It
should be pointed out that the occurrence of these fringes is a three-dimensional effect in
the sense that the inclusion represents a spatial defect of finite size. Figure 2 (Dreyer and
Olschewski, 1994) illustrates the effects of eigenstresses due to phase transformations in
Ni-based single crystal superalloys. The first micrograph shows the initial morphology of
cuboidal y'-precipitates embedded in a y-matrix in a more or less square-like manner
(cf., e.g., Ignat et aI., 1993; Socrate and Parks, 1993; Hazotte and Lacase, 1994). Local
eigenstresses arise because of the different lattice parameters of the yIi-materials and they
eventually lead to a growth of the cubes when the material is aged at elevated temperatures
(micrograph (b)). Moreover, if an additional external stress is imposed on the material the
cubes will link up and form raft- or plate-like structures as shown in the third and fourth
picture.

Fourier transforms are an effective method to handle eigenstrain problems in arbitrarily
anisotropic, linear-elastic bodies. The key to the general solution of eigenstress problems is
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(2.1)

to map the corresponding system of partial differential equations in physical space onto a
system of linear equations in Fourier space which, at least formally, can easily be solved
(Mura, 1987). However, in the case of continuous Fourier transforms (CFT), the difficult
task is to find the inverse transformation: even for very simple forms of the inclusions it is
extremely cumbersome to perform a closed-form integration. This was demonstrated for
the two-dimensional case of eigenstrained cylinders in a recent paper by Dreyer et al.
(1997).

This paper focuses on three-dimensional problems with an emphasis on explicit, c1osed­
form solutions. Specifically, the residual strains in and around a dilatorically eigenstrained
sphere in an infinite cubic matrix with the same crystallographic orientation is computed
by application of CFT and by specialization to "slight" anisotropy. The accuracy of the
closed-form solution is checked by means ofdiscrete Fourier transforms (DFT) , a numerical
technique which is able to handle any degree of anisotropy. It turns out that even for a
higher degree of anisotropy the closed-form solutions is still surprisingly accurate and,
consequently, may be used for parameter studies of inclusion problems in typical single
crystal materials, such as Alumina or Ni-based superalloys. As a second example of a non­
trivial closed-form solution, the elastic energy stored in a body with two dilatorically
eigenstrained spheres is computed. As in the case of the strains use will be made of the
"slight" anisotropy concept. The energy obtained is a function of the eigenstrains of the
two spheres, their diameters, their relative distance and their orientation with respect to the
main crystallographic axes. By minimization of the energy it becomes possible to explain
the preferred orientation of precipitates in cubic matrices, as reported above.

2. THE GENERAL SOLUTION OF EIGENSTRAIN PROBLEMS IN FOURIER SPACE

Consider an infinite linear-elastic body which contains an eigenstrained region of finite
size such that the average of the resulting total strains, 8U' vanishes. Then the general
solution for the total strains in Fourier space, £ij,t can be written as follows (see Mura,
1987, p. 13; or Dreyer et al., 1997):

Bij C~) = Aijkl (~) Btt(~) .

In this equation Is:. denotes the (continuous) position vector in (infinite) Fourier space, and
Btl is the Fourier transform of the eigenstrains which, as it will be shown explicitly in
Sections 3 and 5, is a known function of Is:. and, among other things, depends upon the
shape of the eigenstrained region. The symbols Aijkl can be defined in terms of Is:. and of the
stiffness tensor Cijkl.t

ifk = 0

(2.2)
ifk '# 0

where Nij and D are the adjunct and the determinant of the following matrix, respectively:

(2.3)

Specifically, a cubic material is characterized by three elastic constants and its stiffness
tensor is given by:

Cijkl = )"(j/'hl + f.l«(jik(jjl + (j/lbjk ) + f.l' bijkl

= CI2bijbkl+C44(c)jkc)jl+c)ilc)jk)+(Cll -Cl2 -2C44 )c)ijkl (2.4)

t In this paper Fourier transformed quantities are identified by a hat.
t In what follows the notation of this paper differs by a minus from the one used by Mura (1987).
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Fig. I. Thermal contrast fringes around spherical Zirconia inclusions in Alumina matrix (Mader,
1987).
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(d)

Fig. 2. Effects of eigenstresses in Ni-base superalloys (SRR 99): (a) initial morphology at 20"C; (b)
morphology after 500 h at 980'C ; (c) morphology after 50 h in a tensile creep test (load axes --> ) ;

(d) morphology after 230 h in a cyclic test (load axes<-» (Dreyer and Olschewski, 1994).



Fig. 4a. Total strains "", f;J), "", and 8" in the median plane of a spherical inclusion in an aluminum single crystal; pictures on the top were computed by OFT, pictures on the
bottom follow from the closed-form solution.
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Fig. 4b. Total strains 8 lh 833 , 8", and 8 21 in the median plane of a spherical inclusion in a silver single crystal; pictures on the top were computed by DFT, pictures on the bottom
follow from the closed-form solution.
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Fig. 4c. Total strains 81 J, 833, 012, and 8" in the median plane of a spherical inclusion in a Ni-based single crystal superalloy ; pictures on the top were computed by DFT, pictures on
the bottom follow from the closed-form solution.
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X
J

Fig. 3. An eigenstrained sphere in a cubic matrix.
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where lJ ij and lJ Uk/ denote two- and four-dimensional Kronecker symbols. Moreover, A, J-L,
J-L' are Lame's constants and the anisotropy coefficient, respectively, and the symbols C;j
denote Voigt's constants. By means of this equation it follows that in three-dimensional
space (Mura, 1987, p. 14) :

D = J-L2 (A + 2J-L + J-L')k6 + J-LJ-L' (2A + 2J-L +J-L')e kI; + J-L'2 (3A + 3J-L + J-L')krr (2.7)

where the following contractions have been used:

f3 = J-L(A+J-L+J-L'), 'Y = J-L'(2A+2J-L+J-L'). (2.9)

All other components of N u can be obtained from the cited ones by a consistent change of
indices.

In principle, the total strains in physical space can be obtained from eqn (2.1) by
inverse Fourier transform (see Dreyer et al., 1997, for the conventions used) as follows:

I f+oo ~
eu(x) = ---, Aiik/€t, exp( - ik' x) dk.

- (2n)3/2 -00 . - - -

(2.10)

However, even for a simple spherical geometry of the eigenstrained region the integrations
involved are by no means trivial.

3. A SPHERE IN A CUBIC MATRIX

Consider the situation shown in Fig. 3: a dilatorically eigenstressed sphere, "-", of
radius R is inserted in a cubic matrix, "+", made of the same cubic material with the same
orientation of the crystal axes. Consequently, the eigenstrains are given by:
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Table I. On the smallness of the parameter A (based on data from Auld, 1990, and Socrate and Parks, 1993)

Material (cubic single crystal)

Aluminum
Iron

Nickel
Silver
Gold

Nickel-based superalloyt

tJ.*

-0.36
-1.17
-1.24
-1.32
-1.31
-1.33

0.2
0.76
0.83
0.96
0.99
0.93

t Data after Pollock and Argon from the paper by Socrate and Parks, 1993; the arithmetic averages of the
elastic constants of the 1'/1" phases are shown.

{

I,
8(x) =

- 0,

Vx Ill-

Vx in +
(3.1 )

and 80 is a constant which characterizes the intensity of the eigenstrain. If this equation is
used together with eqns (2.2) and (2.5-2.9) the following result for the strains in Fourier
space is obtained:

where

A(k) = B kr. II*+B kIT (11*)2
- 1 k 4 '" 2 k 6 '" ,

(
*)k k (k k e) k k k

4
r ? (k) = 1+~ _1_2 + * (1 + *) _I_2_3 _ ( *) 2 _I_2_3

J - _ 2 k2 /1 /1 2k4 /1 2k6 '

(3.2)

(3.3)

(3.4)

(3.5)

2.1+2/1+/1' B _ 3,1.+3/1+/1'
,1.+2/1+/1" 2 - .1+ 2/1 +/1' ,

(3.6)

and all the other components of rij can be obtained by index substitution.
The integration in Fourier space can be performed in closed-form if the denominator

in eqn (3.2) is expanded with respect to the parameter A. A similar procedure has been
used before to simplify expressions when computing elastic energies in Fourier space (see,
e.g., McCormack et al., 1992; Wang et al., 1992; Dreyer et al., 1997). Furthermore, note
that:

(3.7)

Table 1 presents elastic data for various cubic single crystals together with the computed
values for the maximum of the parameter A. It must be concluded that A is by no means
«1 for most materials. However, it will be demonstrated by comparison with numerical
results obtained from DFT that, from a practical point of view, it is sufficient to take only
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a first order term with respect to A into account and to neglect quadratic terms in fl*. t
Physically speaking, this may be interpreted as a slight deviation from the case of isotropic
materials:

(3.8)

where:

(3.9)

(3.10)

and all the other components of Vii can be obtained by index substitution.
After insertion of these results into eqn (2.10) and integration with respect to Ii the

following strain fields are obtained for the inside of the sphere:

o

o

o

o

o

o (3.11 )

and for the outside of the cylinder:

+ R
3

{[ (1 15) (3 27 ) R
2

39 R
4JX1X2e ~ Be - -1+ - - -B 11*+ -- +-B 11*- --B 11*- --

12 0,3 - 2 8 1 r 2 4 I r,2 8 I r,4 ,2

(3.12)

t The same concept has been used before in Dreyer et al. (1997) to treat the two-dimensional case of an
eigenstrained cylinder. It is interesting to note that if the denominator in eqn (3.2) is considered as a function of
).1* and expanded with respect to this parameter (including an expansion of the constants B, B" and B2) the
comparison ofthe resulting first order approximation with the numerical data is not as favorable as the comparison
with the result presented above.
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+ B1/1* [-35+ 126 R
2

-99 R
4J[Xi X2+x1x~ +xi X~J},.... (3.13)

8 ~ ~ ~

In these equations r = I~I denotes the radial distance from the origin. As before the other
components can be obtained by suitable index substitution.

Note that this solution is of the Eshelby-type, i.e., the fields are homogeneous and
isotropic within the sphere. The proof of these equations is presented in Appendix A. The
usefulness of this approximate solution, even for strongly anisotropic materials, such as
silver, or Ni-based superalloys will be demonstrated in the next section by comparing it
with results from DFT applied to the problem of an eigenstrained sphere in a cubic matrix.
Note that the underlined terms in eqns (3.12) and (3.13) are identical to Lame's solution
when specialized to the case of a spherical misfit which is inserted into an infinite matrix
made of isotropic material. In this case the constant B reduces to:

l+v
B=­

I-v'
(3.14)

This solution is normally written in polar coordinates. In Cartesian coordinates, Xi' it reads:

(3.15)

4. COMPARISON WITH DISCRETE FOURIER TRANSFORMS

The objective of this section is to test the range of validity of the analytical results for
the strains in and around an eigenstrained sphere in a cubic matrix shown in eqns (3.11)­
(3.13). It is worth mentioning that these expressions are based on an approximation and,
physically speaking, should be interpreted as a slight deviation from the isotropic case.
DFT was used to calculate the strains numerically for three different materials, namely for
aluminum:

A = 61,300 MPa, /1 = 28,500 MPa, /1' = -10,300 MPa, 1:0 = 0.005 (4.1)

for silver:

}_ = 89,400 MPa, /1 = 43,700 MPa, /1' = -57,800 MPa, 1:0 = 0.005, (4.2)

and for the Ni-based superalloy of Table I :

A. = 12,500 MPa, /1 = 91,500 MPa, /1' = -122,000 MPa, 1:0 = -0.0039. (4.3)

The number of discretization points per dimension was chosen to be:

N = 128. (4.4)

All calculations were performed on a SPARC-Server 1000 and the plots were generated by
means of routines from Mathematica@ (Wolfram, 1992).

Note that a special discrete Green's operator where spatial derivatives were approxi­
mated by difference quotients was used during the DFT analysis. Some details can be found
in the work ofDreyer (1995) and in the paper by Muller (1996). An alternative discretization
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procedure based on the continuous Green's operator was used in the work of Moulinec
and Suquet (1994, 1996, 1997).

The density plots shown in Fig. 4 allow one to gain an overview of the stress com­
ponents ell, e33, el2 and e23 in the plane (x], X2, X 3 = 0) for all three materials considered.
The plots in the top row result from DFT analysis and the plots in the bottom row follow
by evaluation of the closed-form solution.

The influence of anisotropy is clearly visible: at ±45° the strain gradients of highly
cubic materials (silver and Ni-based superalloys) are much more pronounced than in the
less anisotropic case (aluminum). Moreover, note that in these more or less qualitative
pictures only little differences between the numerical and the analytical results are discern­
ible.

Figure 5 allows one to see these differences in more detail. The sequences present
vertical and horizontal cuts through the numerically computed strain fields ell and e 33

together with the corresponding data from the analytical solution of eqns (3.11)-(3.13). In
the case of aluminum the agreement is excellent whereas for silver and the Ni-based
superalloy the differences become more pronounced. Obviously outside of the sphere the
agreement is better than inside. It is interesting to note that this behavior is exactly opposite
to the two-dimensional case discussed by Dreyer et al. (1997). Moreover, note that the
closed-form solution tends to underestimate the maximum of the strains.

5. APPLICATIONS TO THE FORMATION OF TEXTURES

Consider the situation shown in Fig. 6 which shows two spheres of different radii, PI
and P2, embedded in an infinite matrix. The spheres and the matrix are made of the same
cubic material with the same orientation of the main crystallographic axes. The eigenstrains,
eTij and e~ij' in the two cylinders are assumed to be purely dilatoric, homogeneous but
different:

with shape functions, 01(i) and 02C!) :

(5.1)

{

I,
01 (x) =

- 0,

ifl~1 < PI

if I~I > PI
{

I,

0,

if I~-BI < P2

if I~-BI > P2
(5.2)

and constants ef and e~.

The objective is to compute the elastic energy stored in this system and to identify the
positions, Rmim CPmim and 9min, of the two spheres for which this energy assumes a minimum.
These positions can be used to explain preferred locations for precipitation in cubic materials
which eventually leads to the formation of characteristic textures (see Section I). In fact,
energetic arguments have been used before for this purpose: Tien and Copley (1970) or
Pineau (1995). For vanishing external loads (n) being the normal unit vector) :

(5.3)

the elastic energy can be computed from:

(5.4)

as is easily seen by application of the kinematic relations:
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X
3

Fig. 6. Two eigenstrained spheres in a cubic matrix.

Gauss' theorem and the equilibrium of forces:

2945

(5.5)

(5.6)

The position and orientation of the two spheres can be described in standard spherical
coordinates, i.e., by a radial distance, R, an azimuthal angle, (fJ, and a polar angle, :) (see
Fig. 6).

By virtue of Hooke's law:

(5.7)

and following the ideas in the work of Khachaturyan and Shatalov (1969) the elastic energy
(5.4) can be evaluated in Fourier space by virtue of the power theorem (bars denote
complex conjugates) :

(5.8)

to become:
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(5.9)

where the symbol Akb has been explained before in eqn (2.2).
If this expression is evaluated for 3-D problems in cubic materials and for purely

dilatoric eigenstrains the following equation results:

(5.10)

where [cp., eqns (2.2), (2.5)~(2.8) and (3.6)] :

(5.11)

and:

(5.12)

In order to enable a closed-form integration a similar procedure is used as in the case of
the eigenstrained sphere in cubic material, Section 3 : the integrand is expanded with respect
to the parameter A(!i:) and only linear terms in p* are taken into account. This results in
the following closed-form expression for the elastic energy of two eigenstrained spheres in
an infinitely large matrix:

HI tTl 3 3 ( 2 2) ( R 2R 2 R 2R 2 R 2R 2)t/J(R, ,9) = Tel-TO =PIP2 -5+7 PI +P2 -1+5 I 2+ I 3+ 2 3

((J B'I' R 3 R 2 R4

(5.13)

where a constant, 'Po, has been defined as follows:

HJ 4n B-B (2 1B *)( *2 3 *2 3)
TO = :3 3 -:5 J1. EI PI +1>2 P2 ,

and:

(5.14)

2J1.+J1.'
B 3 = 2+2J1.+J1.'·

(5.15)

Note that the angular dependence is hidden in the components (R
"

R2 , R3) of the distance
vector. Details of the integration can be found in Appendix B.

As indicated in Table 1 the parameter J1.* seems to be negative for many metals and,
because of its required smallness, it seems reasonable to assume that 'Po and B'I' are positive
and negative, respectively. Consequently, the fact whether the elastic energy, 'Pel> assumes
a local maximum or minimum is determined from the sign of the product ETE! in com­
bination with the behavior of t/J with respect to (R, ((J, 9). Table 2 allows one to identify the
nature and the location of all extremes of t/J in the first octant where R~ = J ~(p~ +p~).

Figure 7(a) presents an overall view of t/J(R h R2, R3 = 0) for the choice PI = 1, P2 =~.

Two characteristic features are clearly visible: the function assumes minima at ((J = nl4
with a periodicity of nl2 and the maxima at ((J = 0 also with a periodicity of n12. Note that
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Table 2. On the location of the extremes of the energy tjJ(R" R" R,)

2947

Sign ofe1M (R" 0, n12) (R" n(4, arccos 1(j3)t (R"O.O) (R" n(2. n(2)

+1+ or -(- Maximum Minimum Maximum Maximum
+(- or -(+ Minimum Maximum Minimum Minimum

t This location corresponds to a position on the spatial diagonal.

(a)

2

(b)

Fig. 7. On the location of the extremes of the energy tjJ(R" R" R3 ): (a) the situation tjJ(R" R" R, = 0);

(b) the situation t(J(R, , R, ,= R,(j3, R,).
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- 1\ 1\
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/ \ /\ 0.002

/ \ /\ 0.001
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/-
''\..

,.
/'"

~ ....'\. ... -",;1-
polar angle e

pi/5 pi/4 0.95 pi/2

Fig. 8. On the location of the extremes of the energy IjJ(RJ, R2, R 1) : sectional cuts.

the "holes" around the center are an artifact due to the graphics software used. They
characterize regions where the two spheres would interpenetrate each other, a case which
is not covered in eqn (5.13).

Figure 7(b) shows ljJ(R I , R2 = RdJ3, R3 ) for the choice PI = 1, P2 = ~ which covers
the behavior of the energy within a plane parallel to the plane (Rj, R3) through the minimum
[R~,nI4,arccos(1/J3)] (cf., Table 2). Due to symmetry this minimum occurs with a
periodicity of n12. Moreover the function goes through maxima at positions shifted by nl2
with respect to the minima. As in Fig. 7(a) the hole in the center is a graphical artifact.

The behaviorofljJ(R1, Rb R3) is examined in more detail in Fig. 8 which shows sectional
cuts at different angles of the 3-D graph of Fig. 7.

Summarizing one may say that if BfB~ is positive, in other words, if the eigenstrains of
the inclusions are both expansive or both contractive in nature, a simple cubic arrangement
of precipitates with respect to main crystallographic axes minimizes the elastic energy.tOn
the other hand, if Bf and B~ have alternating signs the energy is minimized when the
inclusions are arranged in a body-centered or face-centered cubic structure.

6. CONCLUSIONS AND OUTLOOK

Continuous Fourier transforms (CFT) were used to derive closed-form expression for
the total strains inside and outside of a dilatorically eigenstrained spherical inclusion in
an infinite body, both made of the same cubic material with the same orientation of
crystallographic axes. The solution is approximate with respect to the anisotropy coefficient.
It was demonstrated by means of discrete Fourier transforms (DFT) that the overall
behavior of the strains is still well represented by this solution, even for highly anisotropic

tThis corresponds to the maxima of IjJ(R" R" R,) (note that 11* and, consequently, jj are negative!).
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materials. However, the maximum of the strains is slightly underpredicted. Moreover, eFT
was used for explicit computation of the total elastic energy due to the dilatoric misfit of
two differently sized spheres in a cubic matrix. The expression was written as a function of
relative distance of the two spheres as well as their orientation with respect to the main
crystallographic axes. Moreover, it was examined for minima in order to explain the
occurrence of preferred points of location during precipitation in anisotropic solids.
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APPENDIX A: PROOF OF EQNS (3.11)-(3.13)

For the proof of these equations it is necessary to know the Fourier transform of the step function, e(~), for
a spherical region of radius R. It is given by:

- 2 I [Sin(kR) ] (R)J2
e(k) =~k2 -k--Rcos(kR) = k JJ,(kR). (A. I)

The latter becomes evident by means of eqn (8.463.l) from the book by Gradshteyn and Ryzhik (1980), and in
order to prove the first equality the argument starts from the basic definition of a Fourier transform when applied
to the step function:
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Fig. A. I. Orthogonal transformation of coordinates.

, I f+'" I f,R ffO(k) =--. . O(x) exp(ik' x) dx =--. drr' exp(ik' x) sin.9 d.9 d<p.
- (2rr)) , -~ - - - - (2rr))" 0 EK - -

Now the coordinates are transformed as illustrated in Fig. A. I :

x~, = Om'x, = (0,0, r)

with an orthogonal matrix Oi).
Consequently, the components of the position vector in Fourier space can be written as follows:

k~, = Om,k" k;" = (cos 'P sin ii, sin 'P sin ,9, cos .9)k

and the following useful relations hold:

Insertion of these eqns into eqn (A .2) results in:

• I fR f+ I 2 I f,R
O(k)= r- drr' d(exp(ikrO=---;=k rsin(kr)dr

..,f2rr 0 --I ,j2rr 0

(A.2)

(A.3)

(AA)

(A.5)

(A.6)

which can be integrated elementarily, q.e.d.
During the inverse transformation of the approximated eqns (3.8)-(3.10) for £i) use will be made of the same

orthogonal transformation as in eqns (A.3) and (AA) which reads explicitly:

_ (COS 'Po cos 90 sin <Po cos iio -'"'0 )
0,,- --sm'Po cos 'Po

co~90 "

(A.7)

, cos 'Po sin 90 sin <Po sin iJo

After insertion of eqns (A.4), (A. 5) and (A.7) into eqns (3.8)-(3.10) and using polar-coordinates the following
equation for strain components is obtained when performing the inverse Fourier transform.t

(A.8)

where the following symbols have been introduced:

t Einstein's summation rule applies unless the indices are underlined.
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E li -~(I+ *)Olilin - , 11 "11'
(21!)',2

Eo ....
E~mno =,' - __0_, f1*07#f/Jo,

(21!)'!2
(A.9)

II __~ * ii ~
ETnmopq - J1 BIOr;nOnopt/'

(21!)3!2
(A. 10)

I' Beo ( /1*) .2E'm =--. 1+-
2

0lm,
(21!)3!2

(A.II)

E l ' - ~ *B olm onnp'l
ImnoPIJ - - f1 1 12 I: ,

(21!)J!2

f k;k~, A

K'm = . --8(k) exp(-irkcoslJ) dk',
.JI.l k 2 -

f k;k;"k~k;, A • ,

K,mrn! = 8(k)exp(-lrkcoslJ)dk,
~ 0 -

f
k;k;"k:,k;!k;,k~ A • ,

K,mrn,pq = 8(k) exp( -Irk cos IJ) dk ,
,,' k 6 -

To perform the remaining integrations in eqns (A.13)-(A.15) polar coordinates will be used:

with the following factorized integrals:

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.IS)

f'ITF,,= F,,(cp)dcp,

"
(A.19)

P,,,,,,., = rZ

k2J(k)P,,,",,,.(k)dk,
.,In

(A.20)

P,,(k) = 1: P,,(,Y)singexp(-irkcoslJ)d9, P"H"(k) = fa" p","(IJ)sin:Jexp(-irkcoslJ)d,9,

P",,,,.,, (k) = f p,,,"!,,, (9) sin gexp( -irk cos IJ) d9,

and

").... 4 4. 6 6

F" (cp) = cos", cp sin·' cp, F,."" (cp) = cos", cp sin" cp, F,,,,,,.,, (cp) = cos'" cp sino, cp

222 444 /) (i6

PI> (9) = cos·, IJ sin', +6, 9, p,.,," (IJ) = coso, 9 sin·· -", .9, P,.'IW'" (.9) = coso, IJ sin', ",9

2 2 2

.5 1 =.5" +.5", .52 = .5'2 +.5.", .5 3 =.5" +e)",
4 4

.5. =.5" +b" +.5/1 +.5"1' .5, = .5'2 +.5." +.5" +.5"" .5 3 =.5" +.5." +.5 rJ +.5""
6

.5 1 =.5" +.5" +.5'1 +.5"1 +.5'.1 +.5"'1' .5, = e)'2 +.5.•, +.512 +.5", +.5"2 +.5""
6

.53 = .5" +.5" +.5'J + .5"3 +.5'3 +.5"'3'

It should be noted that Fm F","' F,,,w',,,, Pm P,,,,,, p,.,.,w" have the following symmetry properties:

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

Because of:

Pr.i = P"" Prs1u = Pr.,'ul = Prt,lU = Prlu.\' = .. etc. (A.27)
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Table A.!. Results of the <p-integrations (the third row shows a representative, and the fourth row contains the
general symbol)

Two indices Four indices Six indices
\\'/0 35 two 3s wlo 3s two 3s four 3s wlo 3s two 3s four 3s six 3s

FII F" FilII FII22 F11 .1J F.D33 FIIIII! FIIII22 FllII :' J F\12233 F113333 F333333

Fb h 4 4 4 4 6 6 6

F~
, ,

Fb F~ Fi F~ Fb F6 Fl F~ F~
rr 2rr 3rr/4 rri4 rr 2n 5n/8 n/8 3n/4 n/4 n 2n

if eI,
,

p,., = 0, and 6, are odd,
4 4

Fr5 !11 = 0, if 6, and 6, are odd,
6 6

Frs ,lIl'W = 0, if 6, and 6, are odd, (A.28)

and:

(A.29)

all components of F"" F"," and F,,,",,, can be reduced to twelve integrals which can easily be evaluated using eqns
(2.511.1)-(2.511.4) from the monograph of Gradshteyn and Ryzhik (1980). The results are presented in Table
A.!.

With regards to the angle :-} nine integrals have to be solved. To this end formula (8.411) from Gradshteyn
and Ryzhik (1980) can be used:

fn sin3 gexp(-irkcos ,9) d.9 = 2J;'i(~)(rk)-(J;2)J3,(rk),
o

J: sin' ,9 exp( - irk cos 9) d[j = 2';'l( ~) l(3)(rk)·('iO) J,;, (rk),

i'sin7 gexp(-irkcosi-l)d9 = 2';'in)l(4)(rk)-(7iO)J7;, (rk).
o

(A.30)

Table A.2 contains the final results of the .9-integration. The remaining integration with respect to k can be
accomplished by means of formulae (6.574.1) and (6.574.3) from Gradshteyn and Ryzhik (1980). Table A.3
presents the final results.

With the results of Tables A.I and A.3 it is possible to successively evaluate the terms on the right hand side
of eqn (A.8) :

, 0

K,,6,,6m, = To 6'm + To 61) ,)m'

with:

~ 2 2 2 2 2 2 2

To = FoPo, T, = F,P, -FoPo

so that:

, ,
in the inside: To = (2n) 3/2 i, T, = 0,

(A.31)

(A.32)

Similarly:

in the outside:
, . I R'
T = (2n)J' ---

o 3 r J •

o R'
T, = - (2n)3;' -.

r3
(A.33)

, 4

K,.",,6',,)m.Jln,,),," = To (,)'m,)"" + ,)'n,)"," +6,,,6mn ) + T, (,)",)m3,)," +6,,6nJ ,)m" +()",)o],)"",
4

+ ,)m3 ,)n3 6,,, + ,),<3 60J ,)'n + ,)"3 ,)oJ ,)'m) + T4 6/3 6m3 ,)"J ,)"J (A.34)

with:



Table A.2. Results of the 9-integrations (the third row shows a representative, and the fourth row contains the general symbol)

6
PoCk) = 2712 6fi(rk) -(7/2) J 712 (rk) P2(k) = 27

/
2 fi(rk)-15/2).. J s/2(rk)

- 27'26fi(rk) -(7/2) J72 (rk)

P4 = 23/2fi(rk)-13/2)J3;2(rk)

29 /2;;(rk) -(5/2) J u (rk)

+27/26;;(rk)-17/2)J 7/2(rk)

""6
~
[
o'
::l

0'..,
'"-
~
ri
'"
'"8-
'"Cj

'"~.
S'
g.

OQ

'"::l
~

~
S'
'"0-
n
C
cr;:;.

a
'"(b
::l.

~

four 3s
P3m(k)

six 3s
Pmm(k)

4

P4 (k) =

21/2;;(rk)-1/2J I /2(rk)

- 2512 fi(rk) - 13/2) J3/2 (rk)

+27/2 ;;(rk) ~(5/2)J 512 (rk)

6
P6 = 21/2 fi(rk)-1l2)J(j2(rk)

- 3.23/2 j'i(rk) ~(l/2)J '12 (rk)

+3· 27i2 fi(rk)-(5 12)J5/2(rk)

- 2712 6;;(rk) -(7/2) J 712 (rk)

Four indices
two 3s
PI133 (k)

4

P 2 (k) =
2 '12 ;;(rk) - Il/2) J 3/2 (rk)

-- 27;' ;;(rk) -15.2) J s/2(rk)

four 3s
PI 1333J(k)

wlo 3s
PIIII(k)

4

PoCk) =
27'2 fi(rk)~15/2) J 5/2 (rk)

Six indices

two 3s
P33 (k)

2

P,(k) =
21'2 fi(rk)~(1;2) J I ;2(rk)

_23/' fi(rk)~I';')J'!2(rk)

two 3s
PIII133(k)

Two indices
wlo 3s
PII(k)

wlo 3s
Pllllll(k)

2

PoCk) =

2312 fi(rk)~(3/') J 3/2(rk)

N
'-0
V.

""
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Table A.3. Results of the k-integrationst

s

o

2

s

o

2

4

,
Ps inside the sphere

Po=2~
3

4

Ps inside the sphere

46 8~
1'0=-15-

Two indices

Four indices

2

Ps outside the sphere

'- 2~R3
P ----

o - 3 r'

p, = _ 2../~RJ
• 3 r'

4

Ps outside the sphere

Po = 4~R3 (1- ~ R')
3r3 5 y'

4 2~RJ ( R')1', = --- -5+6-
- 15r' r'

4 4 fhr R 5
I' - _v__

4 - - 5 r5

Six indices
s

o

2

4

6

6

Ps inside the sphere

6_ 16J2n
Po =-3-5-

p _8v'~
,- 105

P_2~
4 - 35

6~
1'6 =-­

7

6

Ps outside the sphere

6 -R'( 6R' 3R
4

)Po =2J2n- 1---+--
r' 5 r2 7 r4

6 2~R3 ( R' R
4

)1', = --- -35+84- -45-
105r' y2 y4

6 2 -R'( R' R
4

)P4 = -J2n- -14- + 15-
35 r' r' r4

6 6~R'P - ---
6 - - 7 r'

t The meaning of the symbols becomes apparent by comparison with Table A.2.

4 44 4 4444 4 44 44 44

To = F5Po, T, = FjP, -F6Po, T4 = F~P4-6FjP, +3F6Po

to be evaluated

(A.35)

And finally:

in the inside:

4 (2n)J/'
To =-1-5-'

4

T, =0,

4

T4 = 0,

in the outside:

4 . IR' (I IR')To = (2n)J /2 -- - - -- ,

2 r' 3 5 y'

4 I R ' ( R')T2 =(2n)3/'-- -1+-,
2 r' r2

4 • I RJ
( R')T4 =(2n)3.2_- 5-7- .

2 y3 y2
(A.36)

6

K,,,",,,"),,i5m,i5nri5oui5p<.i5qw = To (i5'mD"oi5pq + i5,mi5"pi5oq + i5 rm i5"qi5op + i5r"i5nwi5pq +i5r"i5mpi5pq + i5,,,i5mq i5op

+ 15'0 i5"m i5pq + i5,,,i5,,pi5mq +i5ro i5"qi5mp + 15,1' i5mo i5nq + i5,pbmn i5oq + i5 rp i5mq b,m + i5 rq i5mo i5"p + brq i5m"i50p + i5,qi5ml,bo,,)
6

+ T, ([bnobpq + i5"pboq + i5"q i5op )br3 bm3 + [i5 mo i5pq + i5mp i5,,,, +bmq bnp )i5{J bn1

+ [bmn i5pq +i5mp i5"q + i5mq i5"p] i5{J i50J + [i5m"i5 oq +bmob"q + i5n",bno )blJ bl'3

+ [i5mn i5pu +bmpb"u + i5 mo bnp )b" i5 q1 + [b,,,bpq + i5,pi5nq + i5,q i5"p) i5 mJ 1503

+ [b'ubpq + i5,pb"q + i5,qi5op ]i5m3 15"3 + [i5 rn i5po +b,pi5"o +brobnp)bm3 bq,

+ [,) lo i5"q +blnboq +,),q,)on]i5mJ i5pJ + [i5'mi5po +b,pi5mo + i5'oi5mp]i5nlbq,

+ [i5'm,)pq +,)Ipbmq + i5,qi5mp ],)"Ji50J + [i5 rm b.o+b,q,)mo + i5'o,)mq),)nJ i5p,
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+ [b,mb"" +b,nbmo + b'qbmo]bu' bpJ + [blmbop +blnbmp + blP bmn]buJ bqJ + [b,mbno +blnbmu + blobmo]bpJ bqJ )
6

+ T4 ([b. J bpq +bpJ boq + bqJ bop]b" bmJ boJ + IbpJ boo + bq, bmp]b" bmJ boJ + boob" <'imJ <'ipJ <'iqJ

+ [<'ipJ bmq +<'io) <'imp)<'i" <'io)buJ + <'imob" bo)<'ip)<'io) + <'imo<'i" <'ioJopJ boJ
6

+ [bp)<'i'q + bq)<'ilp]<'imJ <'ioJ <'i. J + blobm)<'in3 bpJ bq3 + blobm, b03 bo) + <'i'm<'in)boJ <'ipJ b.3) + T6 <'i" <'im3 0oJ <'i.3 <'ip) <'iqJ ,

where

6 6 I) 6 6

T, = P,F~ --APoF~,

6 66 66 66

T4 = P.F~ -6P,F~ +~PoF~,

6 66 66 66 66

T6 = P6F~ -15P4F~ +45P,F~ -PoF~

to be evaluated as follows:

in the inside: in the outside:

6 (2n))!2 6 3" I R 3 (I 2 R 2 I R 4
)

To =-105 ' To = (2n) , --- ----+--,
8,' 3 5,2 7,4

2955

(A.37)

(A.38)

6

T, =0,

6 6 I IR
J

( R' R4
)T6 =0, T6 = rc- -35+126--99-,

2ny 2n S,J ,',4

Insertion of these relations into eqn (A.8) for the strains completes the proof.

(A.39)

APPENDIX B: ELASTIC ENERGY OF TWO EIGENSTRAINED SPHERES

Similarly as in Section 3 the first step toward the calculation of the elastic energy shown in eqn (5.10) is to
expand the denominator in A"mm from eqn (5.11) with respect to the parameter A and to neglect all non-linear
terms in p*:

where:

(B.I)

B _ 3-t+ 2Jl + Jl' 2Jl+ Jl'
- -t+2Jl+fl" B J = -t+2fl+fl"

(B.2)

Now the Fourier transform for the eigenstrains must be inserted. It can easily be obtained from eqns (5.1), (5.2)
and (A.I):

(B.3)

where:

(BA)

Consequently, it follows that:
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(B.5)

In order to solve the remaining integrals it is advantageous to perform an orthogonal transformation analogously
to the one of Appendix A where the position ~ is replaced by the distance vector E. Therefore:

'fI" = 'fit + ,¥1,

with:

f
k'k' k' k'

,¥1 = E I m n 0 '¥ (k') dk'
lmno

iJl 3 k,4 --

and:

Using polar coordinates these relations can be evaluated as follows:

where:

en rx fn'flu = Jo dcp Jo k-' J 3,z(P1k)J3j2 (P1k) dk 0 sin 9 d9,

r1n roo rn

'fIt.3 = Jo dip Jo k-'J3/1(P,k)J3/1(P1k)dk Jo cos(Rkcos9)sin9d9dk,

and:

with:

(R6)

(B.7)

(B.8)

(B.9)

(RIO)

(B.ll)

(B.12)

4 4 4
Pmu (9) = sin·' +., 9 COSh, 9,

P~."U = fa" P,"u(9)sin9d9, ff:>lu(k) = fa" P,,,u(9)sin9cos(Rkcos9)d9,

(B.13)

4 4 4

The symbols ,)" ,)1 and ,)3 have been defined in eqns (A.24)-(A.26) of Appendix A.
Now the first part of the energy, 'fit, can be determined by means of eqns (6.574.2) and (6.573) from the

book of Gradshteyn and Ryzhik (1980):
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Table B.I. Results of the cp-integrations

Four indices

2957

Number of 3s in the indices

Representative of the component

Integrand

Value of the integral

ElIlh Em2

sin' cp, cos' cp
•FA = 3n/4

o
EJl22

sin' cp cos' cp
•
F~ = n/4

2

E,,]]
sin2 cp
•Fl = n

4

•Fl = 2n

(B.14)

The second part of the energy can be computed analogously as outlined before. It should be noted that the
symmetry conditions (A.27) hold so that the cp-integration is identical to the one of Appendix A. Consequently:
and:

(B. 15)

with:

(B.16)

In these eqns pl.O, pJ.2, ... are determined by the numbers of threes appearing in the indices and, therefore, only
six 8- and five k-integrations remain. The 8-integration will be performed by means ofeqns (2.511) and (8.411.5)
from Gradshteyn and Ryzhik (1980) :

In order to solve the k-integrals eqn (6.574.2) from Gradshteyn and Ryzhik (1980) can be applied:

pl.O = p"o =!.2 pJ.2 = p2.2 = ~ pl.' = p'" = ~
45' 4~' IS"

(B.17)

The evaluation of p"o, p3.2 and p'" becomes possible with the help ofeqns (6.573.1), (6.573.~ and (6.578.1) from
the same source. For the case that the two spheres do not interpenetrate the quantities p"o, ]>'.2 and p .• are given
by:

p3 .• = _ ~ (PI p,)3i' Rf +R~ .
IS R J R'

Hence it follows that To, T2 and T. are given by:

(B.18)
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o

J~ sins 9 d9

pl." = fil.o = ~

filII I

Hsins 9

x cos(Rk cos 9) d9

W. H. Muller and S. Neumann

Table B.2. Results of the 9-integrations

Number of 3s in the indices
2

Representative of the component

P:133l Pi323

Integral to solve

J~ sin J 9 cos2 9 d9

Value of the integral
pL2 = fil.2 = ~

Representative of the component

fil'JJ

Integral to solve

J~ sin J 9

X cos2 Hcos(Rkcos ,9) d9

4

H sin .9 cos' 9d9

pL' = fil,4 = ~

J~ sin 9 cos' .9

x cos(Rk cos 9) d9

jjJO(k) =

2"2 r( ~)R -(li2)k-( 1/2)J ,/2(Rk)

Value of the integral

PUCk) =

2 1/2r( ~)R -(3/2)k-(J/2)JJ/2 (Rk)

- 23!2r( ~)R -(J/2)k- IJ/2 )JJ/2 (Rk)

j>J,4(k) =

21!2[(~)R -(1/2)k-(1I2)J ,/2(Rk)

- 25/2 [( ~)R -(3/2)k-(J/2)JJ/2 (Rk)

+27i2 r( ~)R -(S/2Ik-IS/2)J
S
!2 (Rk)

T = 4n e"e" (PIP2)J (5_7R~ +R~).
• 3 1 2 RJ R 2

Taking into account, that:

(B.19)

and that all other components of E'moo vanish, concludes the proof.

(B.20)


